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1 Departamento de F́ısica, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, CP 702, CEP 30123-970, MG, Brazil
2 Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brazil

Received 23 December 2004
Published online 20 April 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. A self-consistent harmonic approximation is used to treat the low temperature limit of the
one and two dimensional S = 1 easy plane magnets. For the one dimensional (1D) model, we calculate
the gap caused by the presence of an external magnetic field applied in the easy-plane. The quantum
phase transition of the one-dimensional model at T = 0 is also studied. For the two-dimensional case, the
Kosterlitz-Thouless (KT) transition temperature as a function of a single-ion anisotropy term is calculated.
The line ends at a quantum critical point, where the KT temperature goes to zero.

PACS. 75.10.Jm Quantized spin models – 75.40.-s Critical-point effects, specific heats, short-range order

1 Introduction

Magnetic systems with reduced dimensionality have at-
tracted much attention in condensed matter physics and
provided a basis for numerous insights into the vary-
ing roles that quantum and thermal fluctuations play
in driving phase transitions. These low-dimensional mag-
nets, because of the enhanced quantum fluctuations, re-
veal far richer physical behavior than their more conven-
tional three dimensional (3D) counterparts [1]. In fact,
the quantum nature and behavior of magnetic systems
have, occasionally, surprised the scientific community with
features that could never be imagined by using analo-
gies to the corresponding classical systems. Among these
interesting features is the behavior of the one dimen-
sional (1D) Heisenberg antiferromagnet which has a qual-
itative different behavior depending on whether the spin
is integral or half integral [2]. For half spins, the 1D
Heisenberg antiferromagnet is known to have a gapless
ground state while, for integer spin, there is a gap be-
tween the first excited state and the ground state. This
state can be destroyed by terms modifying the symme-
try of the Heisenberg model as, for example, exchange
anisotropy and single-site anisotropy.

The spin half 1D antiferromagnet has also a peculiar
behavior when subjected to an external magnetic field.
The effect of a magnetic field applied to classical 1D anti-
ferromagnets is a magnetization developed by a homoge-
neous canting of the spins in the direction of the field; the
so called spin-flop phase. However, for S = 1/2 1D anti-
ferromagnets in an external magnetic field, the spin chain
develops soft modes [3] at the incommensurate wave vec-
tors which connect the field-dependent Fermi points. The
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behavior of this quantum 1D system can be understood
by mapping the spin chain to a 1D system of interacting
fermions known as spinons [4]. Classical 1D spin systems
do not show incommensurate spin correlations, but they
may be a general feature of 1D quantum spin chains [5].
The first experimental evidence for incommensurate spin
fluctuations in a S = 1/2 antiferromagnetic chain was
found by Dender et al. [6] by using the neutron scattering
technique on copper benzoate (Cu(C6D5COO)2 · 3D2O).
Those authors were able to show that, as predicted by
theory, soft modes occur for wave vectors q̃ = π ± δq̃
where δq̃ ≈ 2πM(H)/gµB, with M(H) being the magne-
tization per spin. However, the modes are not completely
soft because the field also induces an unexpected exci-
tation gap ∆(H) which depends on the applied field as
∆(H) ∝ H0.65. The mechanism of the field induced gap
was discussed by Oshihawa and Affleck [7]. They argued
that, due to an alternating g-tensor existing in the copper
compound, a uniform applied field produces an effective
staggered field on the spin chain. Using standard scaling
arguments and numerical calculation for the model, Oshi-
hawa and Affleck obtained ∆ ∝ H0.67, which is in excellent
agreement with the experimental result.

The XY model also represents a particularly important
example of magnetic systems, impacting problems in sev-
eral subjects in condensed matter. In two dimensions, this
model shows an unusual phase transition, the so-called
Kosterlitz-Thouless (KT) transition [8], which has a high
temperature massive phase with exponential decay of cor-
relations, and a low temperature massless phase where
the correlations decay like a power of the distance [9].
Despite the simplicity of the arguments suggesting a KT
transition in a variety of systems, a rigorous proof of the
KT nature of the phase transition in many physically
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interesting systems is still lacking. There are also very in-
teresting aspects to be investigated in the 1D XY model.
In contrast to the Heisenberg ferromagnet, the ground
state of the 1D XY model is no longer trivial [10]. In
fact, it shares many properties with the antiferromagnetic
1D Heisenberg model [11]. The low-lying excitation of the
1D XY spin-1/2 model, just as the Heisenberg 1D anti-
ferromagnet, are also the spin 1/2 objects called spinons,
quite different from standard spin waves [12]. However, for
S > 1/2, we can use spin-waves techniques to treat the
model. For the XY model with S > 1/2, a convenient rep-
resentation for the spin operators that exploits the sym-
metry of the model is the one proposed by Villain [13].

In this paper, we start by considering a general
Hamiltonian that, for a proper choice of parameters, can
describe several models of interest, ranging from the sym-
metric Heisenberg to the pure XY model. This Hamilto-
nian is defined as

H = −J
∑

r,a

[
Sx

r Sx
r+a + Sy

r Sy
r+a + λSz

rSz
r+a

]

+ D
∑

r

(Sz
r )2 − gµBH

∑

r

Sx
r , (1)

where the summations run over all spin sites r and a de-
notes the nearest neighbors to each spin site. We will be
interested in 1D and 2D systems with spin S = 1. Our dis-
cussions will consider D positive ( 0 ≤ D < ∞), but the
exchange planar anisotropy will vary only in the 0 ≤ λ < 1
range. The effect of a magnetic field H applied along the
x-direction will be considered only for one-dimensional
systems.

As it is well known [14], Hamiltonian (1) can be
mapped onto the following Hamiltonian

H1 = J
∑

r,a

[
Sx

r Sx
r+a + Sy

rSy
r+a − λSz

rSz
r+a

]

+ D
∑

r

(Sz
r )2 − gµBH

∑

r

(−1)rSx
r , (2)

indicating that the spectrum of the original Hamiltonian
is invariant under the transformation (J, λ) → (−J,−λ),
where, now, λ varies in the −1 < λ < 0 range, and pro-
vided that the magnetic field H is transformed into a stag-
gered field. In order to apply the invariance of the spec-
trum into a corresponding statement for the transverse
correlation function, it is necessary to shift the Brillouin
zone by k → k + π. With this in mind, we will assume J
positive in (1) but, when convenient, will make compar-
isons to the antiferromagnetic model.

In Sections 2 and 3 of this work, we discuss the one-
dimensional model. The gap induced in the 1D antifer-
romagnet by the staggered magnetic field is analysed in
Section 2 by using the self-consistent harmonic approxi-
mation (SCHA). The quantum phase transition of the 1D
XY ferromagnet with single- site anisotropy (λ = H = 0)
is the subject of Section 3 where we evaluate the criti-
cal value for the anisotropy parameter, Dc. The SCHA
is also used to study the two-dimensional (2D) XY ferro-
magnet. In Section 4, we obtain the Kosterlitz-Thouless

critical temperature, TKT , as a function of the single-site
anisotropy D. The phase transition terminates at a quan-
tum critical point given by Dc. This critical anisotropy de-
pends on the spin S value, and this dependence is shown
in Section 4. We also compare the behavior of TKT as a
function of the anisotropy for the classical XY and pla-
nar rotor models showing that as D → ∞ the two models
coincide. Our conclusions are presented in Section 5.

2 One dimensional case

No exact solution of the Hamiltonians given by equa-
tions (1) or (2) is available for S > 1/2. An analytical
study of the model described by (2) with H = 0 has been
presented recently by Kennedy and Tasaki [15]. Those
authors studied the phase diagram of S = 1 antiferro-
magnetic chains with particular emphasis on the physical
properties of the massive phases. They proved the exis-
tence of the Haldane phase for a particular class of Hamil-
tonians that, unfortunately, does not include the usual
Heisenberg Hamiltonian. Papanicolaou and Spathis [14]
studied the 1D ferromagnet described by (1), also in
the absence of magnetic field, by using semiclassical and
strong-coupling methods. They obtained that the model’s
ground state is XY-like for small values of D (0 ≤ D < J),
but, for large D values (D � J), we can expect a re-
markably different ground state. In fact, they showed that
the energy-momentum dispersion develops a mass gap for
D > J ; there is a gapless-gapped Kosterlitz-Thouless tran-
sition between the XY phase and the large-D phase. This
behavior was also observed by Chen et al. [16] in their
study of the 1D antiferromagnet with H = 0. Using nu-
merical exact diagonalization of finite size systems, Chen
et al. [16] were able to obtain the phase diagram of the
model with a rich variety of phases labelled as Haldane,
large D, XY and ferromagnetic Ising phases. In particular,
they showed that for the antiferromagnet with −1 < λ ≤ 0
and δ = D/J < 0.44 the ground state has gapless phase,
in accordance with the result found by Papanicolaou and
Spathis.

In this work, we will study Hamiltonian (1), consid-
ering H �= 0, by using the self-consistent harmonic ap-
proximation. The SCHA was originally proposed for the
2D classical planar rotor [17], extended later by Menezes
et al. [18] to the classical XY model and by Pires [19]
to the quantum XY model. The approximation consists
in replacing the Hamiltonian of a system by an effec-
tive harmonic Hamiltonian with temperature dependent
renormalized parameters. In order to apply the SCHA to
Hamiltonian (1), we start by writing the spin components
in terms of the Villain representation [13],

S+
n = eiφn

√
(S + 1/2)2 − (Sz

n + 1/2)2,

S−
n =

√
(S + 1/2)2 − (Sz

n + 1/2)2e−iφn , (3)

where n denotes the spin sites of the magnetic chain. There
is an extensive literature describing the SCHA [17–20],
and, for this reason, we will only sketch the main steps
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leading to the expressions for the temperature dependent
parameters. Inserting (3) in (1), and following the proce-
dure described, for example, in reference [20], we arrive at
the following effective Hamiltonian

Ho = J
∑

n

[
S̃2

2
ρ (φn+1 − φn)2 + (Sz

n)2 − λSz
nSz

n+1

]

+ D
∑

n

(Sz
n)2 +

gµBHS

2S2

∑

n

(Sz
n)2 +

gµBHS

2
γ

∑

n

φ2
n,

(4)

where we have used S̃2 = S(S + 1). The parameters ρ,
known as stiffness, and γ are the SCHA temperature de-
pendent parameters defined as

ρ =

〈[
1 −

(
Sz

n

S̃

)2
]〉

e−
1
2 〈(φn+1−φn)2〉 (5)

γ = e−
1
2 〈φ2

n〉
〈[

1 − 1
2

(
Sz

n

S̃

)2
]〉

. (6)

Here, 〈· · · 〉 means a thermal average that must be taken
using the quadratic Hamiltonian Ho given by (4). Equa-
tions (5) and (6) are self-consistent equations that must
be solved iteratively to give the stiffness ρ, and γ for each
temperature.

Taking the Fourier transform of (4), defining δ = D/J ,
h = gµBH/(2JS̃), and setting J = 1 to fix the energy
scale, we obtain

Ho =
∑

q

{
S̃2 [ρ(1 − cos q) + γh]φqφ−q

+ [1 + δ − λ cos q + h] Sz
q Sz

−q

}
. (7)

Hamiltonian (7) can be diagonalized by a Bogoliubov
transformation and we obtain the dispersion relation as
given by

ωq = 2JS̃ {[ρ(1 − cos q) + γh] [1 + δ − λ cos q + h]}1/2
.

(8)
The correlation functions 〈φqφ−q〉 and 〈Sz

q Sz
−q〉, needed

in the calculation of equations (5) and (6), can also be
obtained, giving

〈φqφ−q〉 =
1

2S̃

√
1 + δ − λ cos q + h

ρ(1 − cos q) + γh
coth

(
βωq

2

)
, (9)

〈Sz
q )2〉 =

S̃

2

√
ρ(1 − cos q) + γh

1 + δ − λ cos q + h
coth

(
βωq

2

)
. (10)

Inserting equations (8–10) into equations (5) and (6),
we can obtain several quantities of interest as, for example,
the gap ∆ = ω(q = 0) as a function of the applied field.
In Figure 1, we show the result obtained for the gap ∆ as
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Fig. 1. Gap ∆ as a function of the magnetic field h, according
to Hamiltonian (2). The calculation was performed inserting
equations (9–11) into equations (5) and (6) for zero tempera-
ture. We have used J = S = 1 and δ = 0.
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Fig. 2. The gap induced by the staggered field in (2) as a
function of the temperature. As in Figure 1, we used J = S = 1
and δ = 0. The result displayed was obtained for h = 0.10.

a function of h for λ = δ = 0 and, in Figure 2, the gap as
a function of the temperature for h = 0.10 and λ = δ = 0.
A fit to the curve shown in Figure 1, gives ∆ = 1.63hα

with α = 0.67, which is approximately 2/3. It must be
noticed that the standard spin-wave approximation, i.e.,
equation (8) with ρ = γ = 0 predicts a gap proportional
to h1/2. We thus conclude that the 1D quantum fluctua-
tions are responsible for the change of behavior from h1/2

to h0.67. At the present time, we are not aware of any the-
oretical calculation predicting the behavior of the gap as
a function of the applied magnetic field for the quantum
XY model.

As we can see in Figure 2, the gap decreases monoton-
ically with increasing temperature, but around T2/J ≈
0.65 it drops discontinuously to zero. This discontinuous
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change is an artifact of the SCHA, but for T < T2 the
SCHA is believed to describe the system correctly.

3 Quantum-phase transition in the 1D model

Quantum phase transitions (QPT) have attracted much
interest in recent years [21,22]. These transitions take
place at the absolute zero of temperature, where cross-
ing the phase boundary means that the quantum ground
state of the system changes in some fundamental way.
This is accomplished by changing not the temperature,
but some parameter in the Hamiltonian. One way to study
QPT is by means of the path-integral formalism where a
d-dimensional quantum system at T = 0 is transformed
into a classical d + 1 dimensional model. We will use this
technique here in order to study the QPT of a 1D system
described by the Hamiltonian

H2 = −J
∑

n

(
Sx

nSx
n+1 + Sy

nSy
n+1

)
+ D

∑

n

(Sz
n)2. (11)

which corresponds to the Hamiltonian given by (1) for zero
magnetic field and λ = 0. The ground state of this Hamil-
tonian for D → ∞ corresponds to the large-D phase,
where each quantum spin is restricted to the state Sz = 0.
For D = 0, we must have an XY −like ground state: thus,
there exists a critical value for this anisotropy, Dc, defining
the QPT.

The continuum limit of Hamiltonian (11) can be taken,
precisely, by using the Villain’s transformation defined
in (3) and using the relation [23]

cosφ = e〈φ
2〉/2

[
1 − φ2

2
+ · · ·

]
. (12)

This procedure allows us to write Hamiltonian (11) as

H2 = J
∑

n

[
δ̃(Sz

n)2 − S̃2 cos(φn − φn+1)
]
, (13)

where we have defined δ̃ = ρ+D, and ρ was defined in (5).
Now, using the equation of motion for φ,

φ̇n = −i[φn, H ] = −2iδ̃Sz
n, (14)

we obtain the continuum limit of (11) which is given by,

H2 =
J

2

∫
dz

[
1
2δ̃

(
∂φ

∂t

)2

+ ρS̃2

(
∂φ

∂z

)2
]

, (15)

which is the O(2) non-linear sigma model.
Boschi et al. [24] using a semiclassical approximation,

and making use of spin coherent states, obtained the same
Hamiltonian given by equation (15) with ρ = 1. We re-
mark that, for integer spin S, the Berry phases can be
ignored.

In the path integral approach, we re-scale the temporal
and spatial coordinates according to

x = −i
√

2δ̃t, y = z/(S̃
√

ρ) (16)

and, taking the Lagragean corresponding to (15), we ob-
tain the following Euclidean action

Seucl =
1
2
S̃

√
ρ

2δ̃

∫ ∫
dxdy

[(
∂φ

∂x

)2

+
(

∂φ

∂y

)2
]

, (17)

which describes a 2D classical system, where the coupling

constant K =
√

(2δ̃)/(ρS̃2) plays the role of the temper-
ature in the classical model. In the quantum 1D model
at T = 0, K is a measure of the strength of quantum
fluctuations.

The action given by (17) apparently coincides with the
action of the scalar field, since by a scaling we can write
the action as

S =
K

2

∫
d2x (∇φ)2 . (18)

However, as pointed out by Tsvelik [9], the fact that φ
is an angle variable leads to a more complicated behav-
ior. He shows that, for K > 2/π, the spin pair correlation
function decays as a power law, while for K < 2/π a finite
correlation length arises and the correlation functions de-
cay exponentially at distances larger than the correlation
length.

As it is well known, the classical 2D planar rotor model
has a Kosterlitz-Thouless (KT) transition. The renormal-
ization group estimate for the KT transition tempera-
ture is

TKT/S2 = 1.40. (19)

Using the value of ρ at T = 0, which is ρ(T = 0) = 0.49,
and using the fact that the temperature in (19) is re-
placed by the coupling constant K, we can get a rough
estimate for Dc, the critical value for D. Our estimate
gives Dc = 0.47. Several approximations are incorporated
in this estimate: the procedure of taking the continuum
limit of a Hamiltonian is not free of assumptions that in-
troduce approximations whose extension is hard to esti-
mate. Moreover, the estimate of Dc by the simple way
sketched above, depends strongly on a precise knowledge
of TKT . The numerical calculation performed by Chen
et al. [16] for the antiferromagnetic easy plane chain gave
Dc = 0.44. Thus, our estimate for Dc is in good accor-
dance to the value obtained by Chen et al., in despite of
all approximations done.

It is well known that, for small K, the model has quasi-
long-range spin order with power law decay of spin correla-
tions. We may refer to this phase as a Tomonaga-Luttinger
liquid. For the large K phase, the spin correlations decay
exponentially in imaginary time, and therefore the phase
has a spin gap. The transition between the small and large
K phases is described by the standard KT theory of the
classical model in 2D.

We remark that our results differ from former calcu-
lations by the presence of quantum fluctuations in the
stiffness: ρ is renormalized by the effects of quantum fluc-
tuations, and, therefore, we got a better agreement with
the numerical calculation. This is important if we want to
make comparison with numerical or experimental data.
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At this point, we would like to remember the difference
between the planar rotor and the XY models. The planar
rotor model has only two spin components while the XY
model has three. These two models have also different KT
transition temperatures.

4 Two-dimensional quantum model

We will now consider the Hamiltonian (11) in 2D. Our
aim here is to study the KT phase transition using the
SCHA. Supposing that, up to the transition temperature,
we may consider

| φr+a − φr |� 1 and (Sz
r )2 � 1, (20)

where r specifies a site of the 2D lattice and a denotes
one of its four nearest neighbors, we can use the formalism
presented in Section 2. The Fourier transform of (11) in
2D is given by

HFT = 2J
∑

k

{
S̃2ρ [1 − Γ (k)] φkφ−k + (1 + δ)Sz

kSz
−k

}
,

(21)
where, in 2D, the anisotropy parameter is δ = D/2J ,
Γ (k) = 1/2(coskx + cos ky), and the expression for the
stiffness is given by

ρ =
[
1 − I(ρ, T )

4JS̃2(1 + δ)

]
exp

[
−I(ρ, T )

4JS̃2ρ

]
. (22)

In (22), I(ρ, T ) is a two-dimensional integral defined as

I(ρ, T ) =
1
π2

∫ π

0

dkx

∫ π

0

dkyω(k) coth
(

ω(k)
2T

)
, (23)

where we have set kB = 1. The dispersion relation ω(k) is
given by

ω(k) = 2JS̃
√

ρ[1 − Γ (k)](1 + δ). (24)

Renormalization group analysis [25] shows that, at
TKT , the stiffness should exhibit a universal jump which
is given by 2TKY /πJS̃2. The KT temperature for the
XY model, given by Hamiltonian (21), can then be deter-
mined by the crossing between the ρ(T ) curve, calculated
using (22), and the line η = 2T/πJS̃2. The transition
temperature calculated using this approach is shown in
Figure 3 as a function of δ = D/2J ; here, we have used
J = 1 and S = 1. At δ = 0, we have TXY

KT /JS̃2 = 1.01.
The transition temperature TXY

KT decreases as δ increases,
and, at δc = 3.60, the line of phase transition terminates:
we identify this value of the anisotropy as the quantum
critical point.

At T �= 0, the two-dimensional system undergoes a KT
transition. However, at T = 0K, for δ > δc, the quantum
fluctuations are then so large that the system does not
order and the quantum critical point should be character-
ized by the exponents of the 3D XY model.
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Fig. 3. Transition temperature for the 2D model described
by Hamiltonian (11) as a function of the anisotropy δ.
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Fig. 4. The Kosterlitz-Thouless transition temperature as a
function of the anisotropy δ for the classical version of Hamil-
tonian (11). The continuous line gives the result for the XY
classical model while the dashed line corresponds to the tran-
sition temperature for the classical planar rotor model.

It is interesting to compare the behavior of the tran-
sition temperature for the quantum and classical versions
of (21) as the easy-axis anisotropy D increases. If we take
D = 0 in (21), we have the classical XY model, while the
limit D → ∞ gives the planar rotator model. Taking the
classical limit of (22) corresponds to use I(ρ, T ) = 2T be-
cause, in this limit, coth(ω(k/2T ) = 2T/ω(k). The contin-
uous line shown in Figure 4 gives TKT/JS2 as a function
of δ for the classical case; the behavior is quite differ-
ent from the observed in the quantum case (Fig. 3). For
the classical model, the transition temperature of Hamil-
tonian (21) increases with δ, and, for δ large enough, it
approaches the transition temperature for the planar ro-
tator model, represented by the dashed line of Figure 4.
The results displayed in Figure 4 were obtained taking
J = 1 and S = 1.
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Fig. 5. The critical anisotropy for the quantum model (11)
as a function of the spin S.

However, the classical and quantum versions of any
Hamiltonian should show similar behaviors for large spin
values. In order to understand the different behavior of
TKT × δ in each case, quantum and classical, we show
in Figure 5, an estimate of the critical anisotropy as
a function of S. As we see, δc increases rapidly with
S (Dc ∝ S1.8) showing the crossing from classical to quan-
tum regime.

5 Conclusions

In this work, we have studied the one-dimensional antifer-
romagnet in a staggered magnetic field h using the self-
consistent harmonic approximation. Our result gives a gap
induced by the field depending on h according to ∆ ∝
h0.67. This behavior is quite different from the one pre-
dicted by standard spin-wave approximation (∆ ∝ h1/2)
suggesting that the 1D quantum fluctuations may be re-
sponsible for this change of behavior. However, up to our
knowledge, there is no theoretical or experimental predic-
tion for the behavior of the induced gap as a function of
the applied field for the XY model.

We have also investigated the quantum phase transi-
tion of Hamiltonian (12) using a path integral representa-
tion. The value of the critical parameter, the anisotropy
D, is also evaluated and is in good agreement with a nu-
merical calculation performed by Chen et al. [16].

The SCHA is used in the study of the transition
temperature of two-dimensional ferromagnetic model
described by (12). It is shown that the transition temper-
ature decreases with the single-site anisotropy δ = D/2J .
The line of the phase transition terminates at δ = 3.60
signaling a quantum critical point. It is important to
notice that the behaviors of TKT for the quantum (Fig. 3)
and classical models (Fig. 4) are remarkably different. For
the classical model, TKT does not go to zero as δ increases;

instead, it approaches the value predicted for the planar
rotor model. In order to understand the connection be-
tween the quantum and classical behaviors of Hamilto-
nian (12), we investigate the dependence of Dc with the
spin S. It is shown that Dc increases rapidly with S show-
ing that, for large spin values, the quantum and classical
behaviors merge.

The authors thank the support by CNPq (Conselho Nacional
para o Desenvolvimento da Pesquisa – Brazil)
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